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ABSTRACT

A family Z# of functions from R” to R is k-point separating if, for every k-subset S of R”, there is a
function fe . such that fis one-to-one on S. The paper shows that, if the functions are required to be linear
(or smooth), then a minimum k-point separating family % has cardinality n(k —1). In the linear case, this
result is extended to a larger class of fields including all infinite fields as well as some finite fields (depending
on k and n). Also, some partial results are obtained for continuous functions on R”, including the case when
k is infinite. The proof of the main result is based on graph theoretic results that have some interest in their
own right. Say that a graph is an n-tree if it is a union of n edge-disjoint spanning trees. It is shown that
every graph with k > 2 vertices and n(k—1) edges has a non-trivial subgraph which is an n-tree. A
determinantal criterion is also established for a graph with k vertices and n(k — 1) edges to be an n-tree.

1. Introduction

A family & of functions from R” to R is k-point interpolating if, for every k-subset
S of R” and every function f: S — R, there is a function '€ % such that f’|, = f. An
unsolved problem of approximation theory [5] is the determination of the smallest
dimension CI,(R”, R) of a k-point interpolating subspace & of continuous functions
from R" to R. This problem is unsolved even for n = 2. We investigate a related
problem that was inspired by this one, namely, suppose that we have the less
ambitious goal of obtaining a family & of functions such that, for each k-subset S
of R", there is a function fe % such that fis injective on S. How small can & be?

We say that a function f: X — Y separates a subset S of X if fis injective on S. A
family # of functions from X to Y is k-point separating if every k-subset S of X is
separated by some fe.%. Our principal result is the determination of the cardinality
LS, (R", R) (respectively, DS, (R", R)) of a smallest k-point separating family of linear
(respectively, smooth) functions from R” to R. We prove that, if n,k > 2, then

LS, (R",R) = DS, (R",R) = n(k—1).

Our proof that n(k—1) is an upper bound for LS, (R",R) is based on graph
theoretic results presented in Section 2 which have some interest in their own right.
We say that a graph is an n-tree if it is a union of n edge-disjoint spanning trees. Such
a graph with k vertices clearly has n(k—1) edges. Using a result of Nash-Williams
[10, 11], we show that every graph with k vertices and n(k — 1) edges has a non-trivial
subgraph which is an n-tree. We also establish a determinantal criterion for a graph
with k vertices and n(k—1) edges to be an n-tree.
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In Section 3, we prove that LS, (F", F) = n(k—1) holds for a large class of fields
F, including all infinite fields and even some finite fields (depending on n and k). This
result implies in particular that DS, (R", R) < n(k—1). Thus, to prove equality here,
we only need to establish that n(k—1) < DS, (R”,R), which we do in Section 4.
Finally, in Section 5, we prove some results for CS,(R",R), the cardinality of a
smallest k-point separating family of continuous functions. We find that CS,(R?, R)
>k for k> 2, and that CS,(R",R) > |k/2|(n—1) for n,k > 2. We also consider
the case in which k is infinite. We prove that, for any ordinal number o such that
N, <|R|, if n is finite, then CS (R",R) = LS (R",R) = N,,.

2. Graph theoretic results
2.1. n-trees

In this section, G = (V, E) denotes a graph with vertex set V" and edge set E. We
allow multiple edges but no loops in our graphs. Recall from graph theory that a tree
is a connected acyclic graph. We say that G is an n-tree if there is a partition {£, ...,
E,} of E such that, for every i, the graph (V, E,) is a spanning tree of G, that is, G is
a union of n edge-disjoint spanning trees. (The concept of an n-tree, although not the
name, was introduced by Nash-Williams [10, 11]. Our notion of an n-tree should not
be confused with that of Harary and Palmer [7, 3.5, p. 73], which is an entirely
different concept.)

We will need a theorem of Nash-Williams. Recall that a forest is an acyclic graph,
namely a disjoint union of trees; a forest is connected if and only if it is a tree. For
every subset X < V, let E,, denote the set of all edges of G both ends of which lie in
the set X.

NASH-WILLIAMS THEOREM ([11]). A graph G = (V,E) is decomposable into n
forests if and only if, for every non-empty subset X of V, we have

|Ey| < n(X|—=1). (M

THeOREM 1. If|E| =n(V|—=1) and |V| = 2, then the graph G = (V, E) contains a
subgraph with at least two vertices which is an n-tree.

Proof. Our theorem follows by induction on |V|. If || = 2, then E contains n
edges. Each edge joins the two vertices in V, and therefore determines a spanning tree.
Therefore, G is a union of n spanning trees and is therefore itself an n-tree.

Assume that |V| > 3, and that the theorem holds for graphs with fewer than |V|
vertices. Suppose that there is a proper subset X of V' with |X|>2 and |E,| >
n(|X|—1). Then, by removing some edges from E if necessary, we obtain a subgraph
(X, E") of (V, E) satisfying |E’| = n(|X|—1) and |X| < |V, and by induction we are
done. Otherwise, for all proper subsets X of V' with |X| > 2, we have |E | < n(|X|—1).
By hypothesis, (1) holds when X = V/, and, since we have no loops, (1) holds trivially
when |X| = 1. Hence (1) holds for all subsets X of V. We conclude from the Nash-
Williams Theorem that G decomposes into 7 forests, say K, = (V, E,),i = 1,...,n. This
means that V=V U..UV,, E=E U...UE,, and E,nN E, = (J for i # j. A forest I;
with w, components and p, vertices has p,—m, edges. Since the edges of the forest
partition the edges of G, we have

n(|V|_1) = (pl_w1)+ +(pn_wn)'
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Since p, < |V] and w, = 1, it is clear that p, = || and w, = 1 for all i. Hence each F
is a spanning tree and consequently G is itself an n-tree. By induction, we are done,
and the proof is complete.

2.2. A determinantal criterion for n-trees

We let G = (V, E) be a graph with p > 2 vertices and ¢ edges. We assume that
qg=n(p—1), n>= 1. This is obviously necessary for G to be an n-tree. We fix an
ordering

U1, Vgye.., 0,

for the vertices of G, and an ordering

€,8,,...,8,

for the edges of G. For each such graph, we define a ¢ x ¢ matrix M(G) with entries
which are polynomials in several variables over the rationals so that det M(G) # 0 if
and only if G is an n-tree. In the case in which G is an n-tree, the polynomial det M(G)
is a kind of generating function for the ordered partitions of G into n spanning
subtrees.

First we define the ¢ x p matrix 4 = [a,], where

1 e, has endpoints v, v, where j < k

a; =4 —1 e, hasendpoints v, v, where k < j

0 otherwise.

Fix le[p] ={1,...,p}. Let K be the ¢ x (p — 1) matrix obtained by deleting the /th
column of A. We see in Lemma 1 that the choice of / is not important for our
purposes. Lemma 1 is well known (see, for example, [1, Propositions 5.3 and 5.4]), and
so we omit its proof.

LEMMmA 1. Let T be any (p—1)-subset of [q]. Let K, denote the (p—1)x(p—1)
submatrix of K the row indices of which are in T. Let G, be the spanning subgraph of
G with edge set {e;|ie T}. Then det K, €{0,1, —1} and det K,, = +1 if and only if G, is
a spanning tree in G. In particular, |det K| is independent of .

Let{m}|i=1,...,n,j=1,...,q} be a set of ng real numbers which are algebraically
independent over the field @ of rational numbers. Set
X, = diag[m}, mj, ..., m(] 2)
fori=1,2,...,n, and define M = M(G) to be the matrix in block form:
M=[X,K|X,K|...|X,K]. 3)

Here G is a graph with p vertices and ¢ = n(p—1) edges, and K is the g x(p—1)
matrix defined above. Hence X; Kis a ¢ x (p— 1) matrix, and M is a ¢ x ¢ matrix. Note
that each row of 4 and therefore of K corresponds to an edge of G, and so, to simplify
notation, we identify the edge ¢, with row index i of K. We say that the (p—1)-set
T < [¢q] = E is a tree if the edge-induced subgraph is a tree.

Let (7;, T,,..., T)) be an ordered partition of E such that each 7] is a spanning tree
of G. Let

L= AjisJis-- s JE
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Form the monomial
n
m(T, T,,..., T,) = [ [mjm ..o,
i-1

For distinct partitions, we obtain distinct monomials; hence these monomials are
linearly independent over Q.

THeOREM 2. If G is a graph with p vertices and q=n(p—1) edges, then
det M(G) # 0 if and only if G is an n-tree. If G is an n-tree, then

detM(G)= ) L. L,...T)mL.T,....T) 4)

(Ty, Ty, ..., Ty)

where (1,, T,, ..., T)) runs over all ordered partitions of E into disjoint spanning trees,
a}’ld 6(’119 ];’ et ];,/)E{l, - l}_fOr Cl” (’Ii? ];’ e ];1)

Proof. This theorem is a consequence of Lemma 1 and the following
generalization of Laplace’s expansion for determinants.

Let M be any ¢ x ¢ matrix and let R, C < [g]. Then M, . denotes the submatrix
of M with rows that have indices in R and columns that have indices in C. Laplace’s
expansion of det M can for our purposes be stated as follows (see, for example, [9,
Theorem 12, p. 564]). For a fixed ordered partition (C,, C,) of [q],

detM = } &R,R,C,C)detM, . detM, . ®)
(Ry. Ry
where (R,,R,) runs over all ordered partitions of [¢] into two sets such that
IR, =|C),i=1,2,and &(R,, R,, C,, C,) {1, —1}. This generalizes by induction to the
following. If (C,, ..., C,) is any fixed partition of [¢], then

detM= Y &R,...R

(Ry.....Ry)

Cla-.-a Cn) detMRpCl'”detMRn'Cn (6)

n>

where (R, R,,..., R,) runs over all ordered partitions of [¢] into n sets such that
|R,| = |C)| for all i and &(R,,...,R,,C,,...,C,)e{l, —1}.
To apply this to the ¢ x ¢ matrix
M =[X,K|X,K|...| X, K],
we take
C,={L2,...,p—1}

C,={n—1)(p-D+1,....n(p—1)y}.

Note that C, has p— 1 elements corresponding to the column indices of X; K. Now,
if R, =[q]=Eisa (p—1)-set with R, ={j,,...,j, ,}, we obtain

det M, . =det(diag[nm;,....m; ]K,).

Jp-1
Hence, by Lemma 1,
‘ ‘ R, is a spanning tree

det M, o = e . &)
i 0 otherwise.
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From (6) and (7), we immediately obtain (4). Then, since the monomials m(T,, ..., T,)
are linearly independent, det M(G) # 0 if and only if G is an n-tree.

In this paper, we are primarily interested in families of functions from R" to R.
However, some of our results hold when R is replaced by other fields. For
background material on field theory, see, for example, [8].

We now introduce a definition that allows us to extend our results to a wider class
of fields. The elements m2; can be replaced by field elements which are not algebraically
independent over the ground field.

DEFINITION 1. Let X be a finite subset of a field F. For each subset S of X, define

HSESS S ;é Q
1 S=.

(&

denote the set of all k-subsets of X. We say that X is k-Boolean independent if, for all

functions
a:<g—){09 ls - 1}5

Y uS)n(S)=0 = a(S)=0 forall Se(X).
X k
Se(,ﬂ)
Note that, if X is k-Boolean independent and kX" < k, then X may not be k’-
Boolean independent.

n(S) = {
Let

ExampLE 1. Let F= K(x,,...,x,) where x,,..., x, are algebraically independent
over K. In this case, X = {x,,...,x,} is k-Boolean independent for 1 < k < n.

ExaMPLE 2. Let F be a field and let
E<KE<E<..<E=F

be a chain of subfields, where F, = F_,(0,) for i=1,....,¢t and [F:F_]]=n, > 2. Let
X=1{0,,...,0}. Since, for each i, {1,0,,02,...,07 '} is a basis for F, over F_,, it follows
that {n(S)|S < X} is linearly independent over F,. In particular, X is k-Boolean
independent for all 1 < k < ¢. The following are examples:

(1) Let F=Q(Vp,, VPs» ..., Vp,) Where p,,p,,...,p, are distinct primes. The set
X ={Vp,, VPs...,Vp,} is k-Boolean independent for 1 < k < n since, for each i,
VP, Q(Vpy, Vs, Vi) (see [12]).

(2) Let F=GF(p") where p is any prime and n =n,n,...n,, n, = 2, for all i.
Then there is a tower of subfields

F<E<FE<..<F=F

where F, = GF(p), F; = GF(p™), |, = GF(p""2),..., ;= GF(p"). Then, fori=1,...,
t, there exists a 0,€ F such that F, = F_,(0,). Hence X =1{0,,...,0,} is k-Boolean
independent for 1 <k < ¢
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ExampLE 3. For integers n >k > 1, let X ={m,,...,m,} be a set of positive
integers chosen so that
n k
my < m,
(l;‘J) o

for i=1,2,...,n—1. It is easy to prove by induction on ¢ that X is a #-Boolean
independent subset of ) whenever 1 < ¢ < k.

ExaMmPLE 4. Let F contain an element x which is transcendental over the prime
field of F. Let m,,m,,...,m, be a sequence of positive integers satisfying

my+my+...+m;<m,, for2<i<n—1.

It is easy to see that any integer m =m, +...+m, , where i, < ... <i, uniquely
determines the summands My,...,m;, and, since the powers of x are linearly
independent over the prime field, it follows that the set X = {x™1, x™, ..., x"™»} is k-
Boolean independent for 1 < k < n.

ProrosITION 1. If F is an infinite field and n is a positive integer, then F contains
an n-subset which is k-Boolean independent for 1 < k < n.

Proof. If F has characteristic 0, then @ is a subfield of F, and the result follows
from Example 3. Suppose that I has characteristic p. If F is algebraic over Z , then,
for any finite subfield K of F, take an element «e F— K. Now o is algebraic over K
since Z, = K. Hence K(«) is a finite subfield of F that contains K properly. Thus we
can produce an arbitrarily long chain of finite subfields of F, and the proposition
follows from Example 2. If F is not algebraic over Z,, then F contains an element
which is transcendental over Z,, and the result follows from Example 4.

COROLLARY 1. Theorem 2 holds if in the definition of M(G) we replace the set of
real numbers m; by any set of n(p—1)-Boolean independent elements of cardinality
n*(p—1) in any field.

3. k-point separation with linear functionals
Let U be a vector space over a field F, and let U* be the dual space of U. We define
LS, (U,F) =min{|% |:# < U* and Z is k-point separating}. )

We say that LS, (U, F) is undefined if there is no k-point separating family of
linear functionals in the dual space of U. For any field F, n-dimensional vector space
U over F and positive integer k, it is shown in [2] that, if

k
W
then LS, (U, F) is well defined and
k
LS(U,F) < (n—1)<2>+1.

From this we see that LS, (U, F) can be undefined only when F is finite. This is the
case, for example, when k > |F|. For more details on the case when Fis finite, see [2].
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THEOREM 3. Let F be a field which contains a set of cardinality n*(k— 1) which is
t-Boolean independent for 2 < t < n(k—1), and let U be an n-dimensional vector space
over F. Then, for n,k = 2, we have LS, (U, F) = n(k—1).

We divide the proof of Theorem 3 into two lemmas.

LemMA 2. If Fand U are as in Theorem 3, then, for n,k = 2, LS,(U, F) is defined
and LS, (U, F) < n(k—1).

Proof. Let{m|j=1,...,n(k—1),i=1,...,n} be a set of cardinality n*(k—1) in
F which is -Boolean independent for 2 < r < n(k—1). Take U = F”, and, for each
j=1,...,n(k—1), define f,e U* by

— 1 2 n
S, X, X)) = my Xy Fmix, . mpx,

We claim that these n(k—1) linear functionals are k-point separating on U. Suppose
that this is not true. Then there is a set V' = {p,,...,p,} of k distinct points in U such
that, for each j, f; restricted to V' is not injective. We construct a graph G with vertex
set Vand edge set £ = {f,, ..., f,u_1,}- The incidence relation is defined as follows. For
eachje{l,2,...,n(k—1)}, since f; is not injective on V, we can select integers a;, b; such

that I < a; < b; < k and
Jipa) = 1Py )

We say that Pa, and Py, are endpoints of the edge f;. Note that different edges may join
the same vertices, but there are no loops.

This gives us a graph G with k vertices and n(k—1) edges. By Theorem 1, G
contains a subgraph H = (V,, E,;) with at least two vertices which is an n-tree. By
renumbering, we can take

Vy=A{py.-..p) 2<t<k

Ey={fi,f) q=nt=1).

and

Write
Do = (X{,x5,...,x%) a=1,2,...,¢t

Now, in coordinates, (9) becomes, for je[q],

1 ,.a; 2 y.a; n -0 1,.0; 2 1.b; n b
my Xy +m; Xy 4.+ mp Xy —m xyi—mixy— ... —m} xy = 0. (10)

We think of (10) as a homogeneous system of n(f— 1) linear equations in nt variables
x;. Since the p, are distinct and the f; are linear, we can replace p; by p; = p,—p,, for
all i. Then p; = 0, and so we have reduced the system to a system of n(f— 1) equations
in n(t—1) variables z; = x;—x, i=1,....t—1,j=1,...,n.

Now, if we order the variables

1 2 t—1 1 2 t—1 1 2
20y Zhs ey 2o N 2y T ene s 2o s eens Ty Doy uens 2

t—1

then the matrix of coefficients of the linear system is equal to the matrix M(H) of
Theorem 2. By Corollary 1, since H is an n-tree, we have det M(H) # 0. This implies
that the homogeneous system has only the trivial solution. It follows that p; = 0 for
all i. Hence p, = p, for all i. This contradicts the fact that the p, are distinct. The proof
is complete.

We recall some definitions and results from linear algebra. Let U be an n-
dimensional vector space over a field F. An affine subspace X of dimension w in U is
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a coset X = x+ W where W is a (linear) subspace of U of dimension w. X is a
hyperplane (respectively, line) if X is of dimension n— 1 (respectively, 1). The following
are well known:

(A) If Lis aline and H is a hyperplane in U, then either (i) L is contained in some
(unique) hyperplane parallel to H, or (ii) L intersects each hyperplane parallel to H
in precisely one point.

(B) If H,..., H, are hyperplanes in U, then the intersection H, N ... N H, is either
empty or an affine subspace of dimension at least n—1.

Let % be a family of functions from X to Y, and let S = X. We say that S spoils
Z if, for each fe 7, there exist x,ye S, x # y, such that f{x) = f(y). Clearly & is k-
point separating if and only if % is not spoiled by any subset S of X with |S| < k.

Lemma 3. If U is an n-dimensional vector space over a field F, then LS,(U, F) =
n(k—1) provided that LS,(U,F) is defined. In particular, this is the case when F is
infinite.

Proof. Let # be any family of linear functionals on U of cardinality n(k—1)—1.
It suffices to show that there is some subset S of U of cardinality less than or equal
to k which spoils & . The idea of our proof is first to find two points p, g which spoil
at least n—1 functionals in & . Then we generate successively additional points p;,,
Das 5D -5 Dis_sn O that, as each new point p, is generated, we make sure that »
additional functionals in & are spoiled by the three points p,q,p,. Then, since
m—1D+k—=-2)n=n(k—1)—1, all of & is spoiled by {p,q,P1,Pss--»P1_s}-

Clearly we can assume that each functional fe# is not zero, and so
f7X(¢) is a hyperplane for ce F. We begin by selecting any (n— 1)-subset %, of Z.
Then, since 0 /~*(0) for all fe #,, we have by result (B) above that I = ﬂfeyo/ £71(0)
has dimension at least 1. Let p,g€e 1, p # q, and let L, be the line containing p and q.
Let

Fy=1{feZ | L, <= f"(c) for some ce F}.

Note that %, contains at least n—1 functionals in & and is spoiled by {p, ¢}. Now
assume that we have found, for each / < k—2, the following:

(1) a subset Z of # such that (i) % = & and (ii) | %] = (n—1)+n;

(2) a subset {p,q,p,,...,p,} of U which spoils Z,.

If| 7] = n—14(+1)n, we take &, = % and p,,, = p,. Thus we can assume that
|Z] <m—D+({(+1)n<ntk—1)—1.

We select ' < # \% such that |2'| =n—1if | # \F| = n—1; otherwise, take
9" = # \Z,. Then the intersection J = ﬂfeg,f‘l(f(p)) contains p, and, by result (B)
above, it has dimension at least 1. Therefore, there is a line L, < J with pe L,. Let

9 ={feZ|L, <f'(c)for some ceF}.

Now there are two cases: (I) U2 = %, and (II) #,UZ # Z. In case I, let p,,, be
any point on line L, that is different from p. Then & is spoiled by {p, p,.,}, and hence
all of & is spoiled by {p,q,p,,...,p,,,}. In case I, take ge # \(# U Z), and let d =
g(q). Now, by the definition of &, L, is not contained in any hyperplane g~*(c) parallel
to g7!(d), and so, by result (A) above, g~*(d) intersects L, in exactly one point; call this
Dioi- We claim that p,,, # p and p,,, # q. If p,,, = p, then the line L, = pq lies in
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g '(d); this implies that ge %, but #, = Z and g¢ %. If p,,, = ¢, the lines L, = pq and
L, = pp,., are equal. This implies that 2 = &%,. Then ¥’ < ¥ < %, < %, which is
contrary to the definition of &’. It follows that %, = % U2 U{g} is spoiled by
{Pqsprs-o sy and || = (m—1D)+In+(n—1)+1=n—1+(+1)n, as desired.

4. k-point separation with smooth functions

In this section, we determine the cardinality DS, (R", R) of a smallest family of
smooth (% *) functions from R” to R that separates every set of k distinct points in
R”. Our references for this section are [6, 14, 15]. Given

fisos S RP— R,
we write F = (f,,...,f,,) for the mapping F:R" - R™ defined by
Fx) = (/y(x), .../, (x))

for xeR". We identify the derivative DF(x):R" — R™ with the Jacobian matrix
[0f{(x)/0x,]. The rank of F at x is the rank of DF(x). We require three lemmas.

Lemma 4. If F:R" - R™ is smooth on an open set U, then there is a non-empty
open set V< U on which F has constant rank.

Proof. Let x be a point of U at which the rank of DF(x) attains its maximum,
say k. This implies that DF(x) has a kxk non-singular submatrix. Since the
determinant is a continuous function, it follows that the same submatrix is non-
singular in a neighborhood V of x, and hence DF(X) has rank k in V.

LEMMA 5 ([15, Proposition 12, p. 65]). If F:R" —» R™ is smooth and of constant
rank k on an open set U, then, for each xe U, M = U F~(F(x)) is a manifold of
dimension n—k.

In Lemma 5, the tangent space to M at x is the kernel of DF{(x).

LemMma 6 ([14, Theorem 5-2, p. 111]). A subset M of R" is a k-dimensional
manifold if and only if for each x e M there is an open set U of R" containing x, an open
set Win R¥, and a 1-1 smooth function - W — R" such that (W) = M 0 U, and Df(y)
has rank k for each ye W.

The function f'in Lemma 6 is called a coordinate system around x. In this case,
the tangent space to M at x is the image of Df(y), where f(y) = x.

THEOREM 4. For alln > 1 and k = 2, DS, (R",R) = n(k—1).

Proof. Since linear functionals on R” are smooth, by Proposition 1 and Lemma
2,
DS, (R",R) < n(k—1).
It therefore suffices to prove that any family # of smooth functions on R" of
cardinality nk—n—1 is spoiled by some set of at most k£ points in R".
For ¥ < #, let g,,..., g, be the distinct elements of ¥ listed in any fixed order.

Define
EpR"— R by E,=(g,....8)
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Note that
yeF(F(x)—1{x} <= {x,y}spoils ¥.

By Lemma 4, since 7 is finite, we can find a non-empty open set U of R" such that,
forall ¥ = #, E, has constant rank throughout U. Without loss of generality, we take
U=R"

Our plan is to show that there exists a partition of %

F =FUFHU...UZF, (11

such that the following are true:

(1) [#Al=n—1and |[F|=nfor 1 <j<k—-2;
there exists a point aeR", and there exists a nested sequence L;, 0 <j< k—2, of
submanifolds of R” of positive dimension such that, for 1 <;j < k—2,
(2) aeL; = L, |, and, for each be L,—{a},{a, b} spoils %, and, if j > 1, there is a
point ¢; = ¢,(b)e R" such that {a, b, ¢;} spoils Z,.

Once we have established the existence of such a partition, we can complete the
proof by taking belL, ,—{a}. Then belL,—{a} for all i, and so, by (2) above,
there exists for each i>1 a point ¢, such that {a,b,c,;} spoils % U%,. Hence
{a,b,c,, ¢y, ..., C,_,} spoils F, as desired.

To prove the existence of such a partition, we consider first the easy case in which
rank (£) < n—1 for every (n—1)-subset 4 of . In this case, we can take (11) to be
any partition satisfying (1) above, and let a be any point of R". Write F, = F; for all
i, and set

L =F'Fa) 0<i<k—2.
Since rank (F)) < n, by Lemma 5, L, is a manifold of positive dimension. Hence, if be
L,—{a}, then {a, b} spoils %, Under our current assumptions for i > 1, rank(F) < n,
and so M, = F ' F(a) is also a manifold of positive dimension; if ¢,e M,—{a}, then
{a, c,} spoils %, and so {a, b, ¢;} also spoils Z.

It remains to consider the case in which there is an (n— 1)-subset ¥, of % with
rank(F, ) = n—1. In this case, in (11), take Z = %, and let the rest of the partition
be chosen arbitrarily subject to (1) above. Again write F; = F, and let a be any point
of R". We define the L, recursively as follows. First let L, be the 1-dimensional
manifold F;! F(a). Clearly, if be L,—{a}, then {a, b} spoils #,. Assume that we have
already selected L;,0 <j < i< k—2, satisfying the conditions in (2) above. Notice
that each L, is 1-dimensional. To define L, we consider three cases:

Case 1: rank(F) < n.
In this case, we set L,= L, ,. Then M = F'F(a) is a manifold of positive
dimension, and so there is an element ¢,e M —{a}, and hence {a, c;} spoils Z,.

Case 2: There exists an f€ . such that the mapping F = Fzuin has rank n—1.

In this case, M = F~'F(a) is a manifold of dimension 1 containing a and contained
in L,. By assumption, ael, , < L, Since M and L, , are both I-dimensional
submanifolds contained in the 1-dimensional manifold L, and ae M N L,_, using
Lemma 6, one can show that L,;=Mn L, , is a 1-dimensional manifold. Note that
L, contains a and is contained in L, ,. If be L,—{a}, then {a,b} spoils %, Since
be M —{a},{a, b} spoils % U {f}. On the other hand,

M’ = F;! (I%—<f}(a))

1)
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is a manifold of positive dimension, and so any point ¢,e M’ —{a} makes {c,, a} spoil
F —{f}. Then {a, b, ¢;} spoils Z.

Case 3: rank(F) = n and rank F; | ,, = n for all fe 7.
Let

Fo=nfud and F=1gy, .. 8,0,8,0
Then

E}:F%:(.fla"'afn—l) and E:E;"'i:(gla"'sgn,—lagn)'

In addition, we define
F= Fli(]u{gn) ={/psfu1p8) and G = Fﬁi—(gn) =(gp->&u1)-

In this case, F; and F have rank n, and F; and G have rank n— 1. Thus the manifold
K = G'G(a) is 1-dimensional. Now it suffices to establish Assertion 1.

ASSERTION 1. There is a I-dimensional manifold L, with ae L, < L, , and a 1-
dimensional manifold K, = K such that, for any xe L, the level set g,* g,(x) contains
exactly one point from each of the manifolds L, and K|,

Once Assertion 1 has been established, we can complete the proof as follows. Let
be L,—{a}. Then be L,—{a}, and so {a, b} spoils %, By Assertion 1, L, n g,'g,,(b) = {b}
and K,Ng,'g,(b) = {c} for some point ¢. Now there are two possibilities: b = c,
or b # c. Suppose that b = ¢. Then be K,—{a}, and so {a, b} spoils g,, ..., g,_,. Then we
take ¢, to be any element of g,'g,(b)—{b}, and {b, ¢;} spoils g,. Hence {a, b, ¢,} spoils
Z.. On the other hand, if b # ¢, then {b, ¢} spoils g,. Also, ce K, = G 'G(a), and so {a, c}
spoils g,,...,g,_, unless ¢ = a. However, if ¢ = a, then a and b are distinct elements of
L,ng,'g,(b), which contradicts Assertion 1. Therefore, if we set ¢, = ¢, then {a, b, ¢;}
spoils %, and the proof is completed.

It remains to prove Assertion 1. Since F, has rank n throughout R”, by the Inverse
Function Theorem, there are open sets U and V with ae U such that F maps U
diffeomorphically onto V. To simplify the proof, we identify U with V via F. This
allows us to assume that the functions g; are simply the coordinate projections
g/(xy,...,x,) = x; for (x,,...,x,)eU.

From above, both K and L, are 1-dimensional manifolds containing a. Since L,_,
is a manifold of positive dimension contained in L,, it also has dimension 1, and, by
assumption, it contains a. It follows from Lemma 6 that there are coordinate systems

l,— K and y:I,—> L,
where I, and I, are open intervals in R chosen so that 0e/, N [,,

) =y0)=a=(a....a,

and each of D (1), tel,, and Dy(?), te I, have rank 1, and in particular are non-zero.
We write
(0 =(0,..., (1) foriel

w(t) = (w,(0),...,w,(0) foriel,
Then
D (t)=(0),..., () foriel,

Dy (1) = (y1(0), ..., w, (1) foriel,.
We wish to establish that /(#) # 0 for tel, and y/(¢) # 0 for te1,.
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Note that, since g, is the projection on the nth component, for all ye U, the
tangent space to g,'g,(») is the hyperplane of all points (x,,...,x,)eR" such that
x,, = 0. Thus, to show that y/(¢) # 0, it suffices to show that Dy(¢) is not in the tangent
space to g,%g,(») when y = w(¢).

Suppose that v:= Dy(¢) is in the tangent space to g,'¢,(y) and y = w(r). By the
comment following Lemma 5, we have Dg,(y)v = 0. By the same comment, since v
is in the tangent space to L,, we have DF(y)v = 0. It follows that DF(y)v = 0.
However, DF(y) is non-singular since F has rank n and hence v = 0. This contradicts
the fact that Dw() is non-zero for tel,, and it thus proves that w/(7) # 0 for te,.

By the same reasoning, since rank F, =n, we can prove that /() # 0 for all
tel,.

This shows that the mappings ,:1, - R and y,: 1, — R are both injections. Since

.(0) = v,(0) = a,, the nth component of a, there is an open interval / in R such that
a,elc ,(I)ny,I,). Let J, = ') and J, = y,'(I). Finally, if we set K, = (J,)
and L, = w(J,), then Assertion 1 holds. This completes the proof.

5. k-point separation with continuous functions

The motivation for this paper was originally the following question. Suppose that
& 1is a family of continuous functions from R” to R that separates every k-element
set of points in R”. How small can & be? Unfortunately, we were unable to determine
this number, CS,(R", R), for all k, n. Nevertheless, we know from the linear case in
Section 3 that, if n,k > 1, then CS,(R",R) < n(k—1), and we suspect that equality
holds. All we can say at present is that the lower bound on CS,(R", R) increases at
least linearly with k and n.

ProrosiTION 2. If n > 1, then CS(R",R) = k for all k > 0.

Proof. We prove the proposition by induction on k. As there is no continuous
injection from R” to R, the proposition holds for k =2. We claim that, if the
proposition holds for k, then it holds for k+ 1. Since CS (R",R) > CS,(R? R) for
n > 2, we can assume that n = 2.

Suppose that CS,(R", R) > k, and that f,,...,f,:R" —» R are continuous. We will
find a (k+1)-set that f,,...,f, fail to separate. By induction, there exists a k-set
{p1-.-,p,; S R" that f,,....f,_, fails to separate. If this set is not separated by f,
either, we are done; otherwise, without loss of generality, we can suppose that
f(p) < filpy) < ... <fp,)- There are two cases.

Case 1: If k = 2, draw three disjoint arcs, and call them 4, 4,, 4,, from p, to p,.
By the Intermediate Value Theorem, there exist ¢, € 4,, ¢,€ 4, and ¢, € A, such that
1:(41) = 1x(q2) = f(q5). If any two of f,(¢,), /1(¢,). /1(¢;) are equal, say f,(q,) = 11(q5),
then {q,,q,} spoil f, and f,. Thus, without loss of generality, suppose that f,(¢,) <
11(¢2) < f1(g5). We have two subcases. If f,(¢,) = f,(p,), then {p,. q,.q5} spoil /, and ,.
On the other hand, if f,(¢,) # fi(p,), say fi(¢,) > f,(p,), then, by the Intermediate
Value Theorem, there exists a ¢g; € 4, between p, and ¢, such that f,(¢;) = f,(¢,), and
{q., 45,45} spoils f,, f,; similarly, if f,(¢,) < f,(p,), there exists a ¢;€ 4, such that {g,,
45545} spoils £, /5.
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Case 2: If k> 2, there exists an arc from p, to p, that misses p,. By the
Intermediate Value Theorem, there exists a p,,, on this arc such that f,(p,.,) = f.(p,)-
However, then {p,,...,p,.,} spoils fi,...,f,. This completes the proof.

ProposiTION 3. For all k,n =2, CS,(R",R) > |k/2|(n—1).

Proof. First, note that there is no continuous injection from R” to R"™!. This
follows immediately from the Borsuk—Ulam Theorem [13, p. 266]. It suffices to prove
that CS,,(R",R) > [(n—1) for [ > 1.

Suppose that we have /(n—1) continuous functions f;, ..., f;,_,, from R" to R; we
will find 2/ points that spoil them. For each i, let F:R" - R""! be defined by

F(x) = (.f(ifl)(nfl)Jrl(x)’ .. a.ff(n—n(x))-

As F is not injective, there exist x;, y, such that F(x,) = F(y,), and thus, for each j,

(z—l)(n— 1) <j<i(n—1),f(x,) = f(y,). Then{x,:i=1,.... U{y;:i=1,...,1} spoils
S+ >Sin_1y- The proof is complete.

We suspect that it should not be too difficult to prove that CS,(R",R) >
(k—1)(n—1). Showing that the lower bound is n(k—1) may be more difficult.

We conclude with a curious observation. Given n, CS,(R", R) increases linearly
(and hence polynomially, not exponentially) in k. Yet, as we shall see, CS, (R",R)
is bigger than &,. This suggests that the infinite analogue of this theorem should have
CS(R", R) increasing slowly above «, but not so rapidly that CSy, (R", R) = ¢, where
¢ = 2™. The result is some empirical evidence against the Continuum Hypothesis.
(Note that no evidence can be more than empirical, for Cohen [3, 4] proved that the
Continuum Hypothesis is neither provable nor disprovable from standard set theory,
that is, the Zermelo—Frankel axioms. Whether or not the Continuum Hypothesis is
‘true’ depends on its utility, philosophical justification, aesthetic appeal, etc. Some
authors have argued that, in ‘reality’, the continuum is ‘much’ larger than the
integers.) Recall that, if N, is a transfinite cardinal number, then N, , is the next
highest cardinal number.

THEOREM 5. If 1 <n <N, and X, <, then CS (R",R) = LS (R",R) =N

Proof. First, CS, (R",R) > N,. Given some continuous functions f;:R" — R,
B <N,, we choose a sequence of pairs of points p, ¢, such that, for each g, f,(p,) =
fi(qy) and, for any B,7,1py, 44 p,»q,} contains four distinct points. (This can be done
by recursion on . If p,, ¢, have been chosen for all y < f, then fewer than ¢ points have
been chosen so far. If f; is constant, choose any thus far unchosen p;, g;; otherwise,
choose 04,7, such that, for some fixed ¢, fy(0y) < ¢ <fyry), and then imagine ¢
mutually disjoint arcs from o, to r,. By the Intermediate Value Theorem, each arc
contains at least one point p such that f,(p) = ¢, and, as at most || < ¢ of these have
been chosen so far, we can choose two more, and call them p, and ¢,.) This set of ¥,
points spoils {f;:f < N}

On the other hand, LS (R",R) <N,,,. To prove this, we construct a family of
N,.; linear functions from R" to R that separate all N,-subsets of R". Let H be a set
of N,,, real numbers. For re H, define f,:R" - R by setting

JiX0 Xy Xgy ooy X,) = Xy FFX,+PPX, 4 17X,
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Let # = {f.:reH}. By Vandermonde’s determinant, if r,, ..., r, are distinct elements
of H, then the homogeneous linear system f, (x) = 0, 1 < /< n, has only the trivial
solution x = 0. It follows that, if p and ¢ are distinct points of R”, then the set

F(p.q) = /€7 | f(p) = q)}
has at most n—1 elements. Now we claim that & separates every set of ¥, points. If

this is not true, then there is a set S of &, points that is not separated by % . Hence,
for each fe #, there is a pair of distinct points p, g€ S such that f{p) = f(g). That is,

7= U, 709 (12)

{1 1 S
lpxm(z)

S

2
is the set of all two element subsets of S. However, since

S

2
has cardinality N, and each set # (p, ¢) has cardinality », the right-hand side of (12)
has cardinality ¥,, and we have a contradiction.

where
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