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A family & of functions from 2n to 2 is k-point separating if, for every k-subset S of 2n, there is a
function f `& such that f is one-to-one on S. The paper shows that, if the functions are required to be linear
(or smooth), then a minimum k-point separating family & has cardinality n(k®1). In the linear case, this
result is extended to a larger class of fields including all infinite fields as well as some finite fields (depending
on k and n). Also, some partial results are obtained for continuous functions on 2n, including the case when
k is infinite. The proof of the main result is based on graph theoretic results that have some interest in their
own right. Say that a graph is an n-tree if it is a union of n edge-disjoint spanning trees. It is shown that
every graph with k& 2 vertices and n(k®1) edges has a non-trivial subgraph which is an n-tree. A
determinantal criterion is also established for a graph with k vertices and n(k®1) edges to be an n-tree.

1. Introduction

A family & of functions from 2n to 2 is k-point interpolating if, for every k-subset

S of 2n and every function f :S!2, there is a function f « `& such that f «r
S
¯ f. An

unsolved problem of approximation theory [5] is the determination of the smallest

dimension CI
k
(2n,2) of a k-point interpolating subspace & of continuous functions

from 2n to 2. This problem is unsolved even for n¯ 2. We investigate a related

problem that was inspired by this one, namely, suppose that we have the less

ambitious goal of obtaining a family & of functions such that, for each k-subset S

of 2n, there is a function f `& such that f is injective on S. How small can & be?

We say that a function f :X!Y separates a subset S of X if f is injective on S. A

family & of functions from X to Y is k-point separating if every k-subset S of X is

separated by some f `&. Our principal result is the determination of the cardinality

LS
k
(2n,2) (respectively, DS

k
(2n,2)) of a smallest k-point separating family of linear

(respectively, smooth) functions from 2n to 2. We prove that, if n,k& 2, then

LS
k
(2n,2)¯DS

k
(2n,2)¯ n(k®1).

Our proof that n(k®1) is an upper bound for LS
k
(2n,2) is based on graph

theoretic results presented in Section 2 which have some interest in their own right.

We say that a graph is an n-tree if it is a union of n edge-disjoint spanning trees. Such

a graph with k vertices clearly has n(k®1) edges. Using a result of Nash-Williams

[10, 11], we show that every graph with k vertices and n(k®1) edges has a non-trivial

subgraph which is an n-tree. We also establish a determinantal criterion for a graph

with k vertices and n(k®1) edges to be an n-tree.
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In Section 3, we prove that LS
k
(Fn,F )¯ n(k®1) holds for a large class of fields

F, including all infinite fields and even some finite fields (depending on n and k). This

result implies in particular that DS
k
(2n,2)% n(k®1). Thus, to prove equality here,

we only need to establish that n(k®1)%DS
k
(2n,2), which we do in Section 4.

Finally, in Section 5, we prove some results for CS
k
(2n,2), the cardinality of a

smallest k-point separating family of continuous functions. We find that CS
k
(2#,2)

&k for k& 2, and that CS
k
(2n,2)":k}29 (n®1) for n,k& 2. We also consider

the case in which k is infinite. We prove that, for any ordinal number α such that

bα ! r2r, if n is finite, then CSbα
(2n,2)¯LSbα

(2n,2)¯bα+"
.

2. Graph theoretic results

2.1. n-trees

In this section, G¯ (V,E ) denotes a graph with vertex set V and edge set E. We

allow multiple edges but no loops in our graphs. Recall from graph theory that a tree

is a connected acyclic graph. We say that G is an n-tree if there is a partition ²E
"
,… ,

E
n
´ of E such that, for every i, the graph (V,E

i
) is a spanning tree of G, that is, G is

a union of n edge-disjoint spanning trees. (The concept of an n-tree, although not the

name, was introduced by Nash-Williams [10, 11]. Our notion of an n-tree should not

be confused with that of Harary and Palmer [7, 3.5, p. 73], which is an entirely

different concept.)

We will need a theorem of Nash-Williams. Recall that a forest is an acyclic graph,

namely a disjoint union of trees ; a forest is connected if and only if it is a tree. For

every subset XXV, let E
X

denote the set of all edges of G both ends of which lie in

the set X.

N-W T ([11]). A graph G¯ (V,E ) is decomposable into n

forests if and only if, for e�ery non-empty subset X of V, we ha�e

rE
X
r% n(rX r®1). (1)

T 1. If rE r¯ n(rV r®1) and rV r& 2, then the graph G¯ (V,E ) contains a

subgraph with at least two �ertices which is an n-tree.

Proof. Our theorem follows by induction on rV r. If rV r¯ 2, then E contains n

edges. Each edge joins the two vertices in V, and therefore determines a spanning tree.

Therefore, G is a union of n spanning trees and is therefore itself an n-tree.

Assume that rV r& 3, and that the theorem holds for graphs with fewer than rV r
vertices. Suppose that there is a proper subset X of V with rX r& 2 and rE

X
r&

n(rX r®1). Then, by removing some edges from E
X

if necessary, we obtain a subgraph

(X,E «) of (V,E ) satisfying rE «r¯ n(rX r®1) and rX r! rV r, and by induction we are

done. Otherwise, for all proper subsets X of V with rX r& 2, we have rE
X
r! n(rX r®1).

By hypothesis, (1) holds when X¯V, and, since we have no loops, (1) holds trivially

when rX r¯ 1. Hence (1) holds for all subsets X of V. We conclude from the Nash-

Williams Theorem that G decomposes into n forests, say F
i
¯ (V

i
,E

i
), i¯ 1,… , n. This

means that V¯V
"
e…eV

n
, E¯E

"
e…eE

n
, and E

i
fE

j
¯W for i1 j. A forest F

i

with ω
i
components and p

i
vertices has p

i
®ω

i
edges. Since the edges of the forest

partition the edges of G, we have

n(rV r®1)¯ (p
"
®ω

"
)­…­(p

n
®ω

n
).
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Since p
i
% rV r and ω

i
& 1, it is clear that p

i
¯ rV r and ω

i
¯ 1 for all i. Hence each F

i

is a spanning tree and consequently G is itself an n-tree. By induction, we are done,

and the proof is complete.

2.2. A determinantal criterion for n-trees

We let G¯ (V,E ) be a graph with p& 2 vertices and q edges. We assume that

q¯ n(p®1), n& 1. This is obviously necessary for G to be an n-tree. We fix an

ordering

�
"
, �

#
,… , �

p

for the vertices of G, and an ordering

e
"
, e

#
,… , e

q

for the edges of G. For each such graph, we define a q¬q matrix M(G) with entries

which are polynomials in several variables over the rationals so that detM(G)1 0 if

and only if G is an n-tree. In the case in which G is an n-tree, the polynomial detM(G)

is a kind of generating function for the ordered partitions of G into n spanning

subtrees.

First we define the q¬p matrix A¯ [a
ij
], where

a
ij
¯

1

2
3

4

1 e
i
has endpoints �

j
, �

k
where j!k

®1 e
i
has endpoints �

j
, �

k
where k! j

0 otherwise.

Fix l ` [p]¯²1,… , p´. Let K be the q¬(p®1) matrix obtained by deleting the lth

column of A. We see in Lemma 1 that the choice of l is not important for our

purposes. Lemma 1 is well known (see, for example, [1, Propositions 5.3 and 5.4]), and

so we omit its proof.

L 1. Let T be any (p®1)-subset of [q]. Let K
T

denote the (p®1)¬(p®1)

submatrix of K the row indices of which are in T. Let G
T

be the spanning subgraph of

G with edge set ²e
i
ri `T ´. Then detK

T
` ²0, 1,®1´ and detK

T
¯³1 if and only if G

T
is

a spanning tree in G. In particular, rdetK
T
r is independent of l.

Let ²mi

j
r i¯ 1,… , n, j¯ 1,… , q´ be a set of nq real numbers which are algebraically

independent over the field 1 of rational numbers. Set

X
i
¯diag[mi

"
,mi

#
,… ,mi

q
] (2)

for i¯ 1, 2,… , n, and define M¯M(G) to be the matrix in block form:

M¯ [X
"
K rX

#
K r… rX

n
K ]. (3)

Here G is a graph with p vertices and q¯ n(p®1) edges, and K is the q¬(p®1)

matrix defined above. Hence X
i
K is a q¬(p®1) matrix, and M is a q¬q matrix. Note

that each row of A and therefore of K corresponds to an edge of G, and so, to simplify

notation, we identify the edge e
i
with row index i of K. We say that the (p®1)-set

TX [q]¯E is a tree if the edge-induced subgraph is a tree.

Let (T
"
,T

#
,… ,T

n
) be an ordered partition of E such that each T

i
is a spanning tree

of G. Let

T
i
¯² j"

i
, j#

i
,… , jp−"

i
´.
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Form the monomial

m(T
"
,T

#
,… ,T

n
)¯0

n

i="

mi

j
"
i

mi

j
#
i

…mi

j
p−"

i

.

For distinct partitions, we obtain distinct monomials ; hence these monomials are

linearly independent over 1.

T 2. If G is a graph with p �ertices and q¯ n(p®1) edges, then

detM(G)1 0 if and only if G is an n-tree. If G is an n-tree, then

detM(G)¯ 3
(T

"
,T

#
,…,Tn)

ε(T
"
,T

#
,… ,T

n
)m(T

"
,T

#
,… ,T

n
) (4)

where (T
"
,T

#
,… ,T

n
) runs o�er all ordered partitions of E into disjoint spanning trees,

and ε(T
"
,T

#
,… ,T

n
) ` ²1,®1´ for all (T

"
,T

#
,… ,T

n
).

Proof. This theorem is a consequence of Lemma 1 and the following

generalization of Laplace’s expansion for determinants.

Let M be any q¬q matrix and let R,CX [q]. Then M
R,C

denotes the submatrix

of M with rows that have indices in R and columns that have indices in C. Laplace’s

expansion of detM can for our purposes be stated as follows (see, for example, [9,

Theorem 12, p. 564]). For a fixed ordered partition (C
"
,C

#
) of [q],

detM¯ 3
(R

"
,R

#
)

ε(R
"
,R

#
,C

"
,C

#
) detM

R
"
,C

"

detM
R
#
,C

#

(5)

where (R
"
,R

#
) runs over all ordered partitions of [q] into two sets such that

rR
i
r¯ rC

i
r, i¯ 1, 2, and ε(R

"
,R

#
,C

"
,C

#
) ` ²1,®1´. This generalizes by induction to the

following. If (C
"
,… ,C

n
) is any fixed partition of [q], then

detM¯ 3
(R

"
,…,Rn)

ε(R
"
,… ,R

n
,C

"
,… ,C

n
) detM

R
"
,C

"

…detM
Rn,Cn

(6)

where (R
"
,R

#
,… ,R

n
) runs over all ordered partitions of [q] into n sets such that

rR
i
r¯ rC

i
r for all i and ε(R

"
,… ,R

n
,C

"
,… ,C

n
) ` ²1,®1´.

To apply this to the q¬q matrix

M¯ [X
"
K rX

#
K r… rX

n
K ],

we take

C
"
¯²1, 2,… , p®1´

C
#
¯²p, p­1,… , 2(p®1)´

…

C
n
¯²(n®1) (p®1)­1,… , n(p®1)´.

Note that C
i
has p®1 elements corresponding to the column indices of X

i
K. Now,

if R
i
X [q]¯E is a (p®1)-set with R

i
¯² j

"
,… , j

p−"
´, we obtain

detM
Ri,Ci

¯det (diag [mi

j
"

,… ,mi

jp−"

]K
Ri

).

Hence, by Lemma 1,

detM
Ri,Ci

¯
1

2
3

4

³mi

j
"

…mi

jp−"

R
i
is a spanning tree

0 otherwise.
(7)
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From (6) and (7), we immediately obtain (4). Then, since the monomials m(T
"
,… ,T

n
)

are linearly independent, detM(G)1 0 if and only if G is an n-tree.

In this paper, we are primarily interested in families of functions from 2n to 2.

However, some of our results hold when 2 is replaced by other fields. For

background material on field theory, see, for example, [8].

We now introduce a definition that allows us to extend our results to a wider class

of fields. The elements mi

j
can be replaced by field elements which are not algebraically

independent over the ground field.

D 1. Let X be a finite subset of a field F. For each subset S of X, define

π(S )¯
1

2
3

4

0
s`S

s S1W

1 S¯W.

Let

0Xk1
denote the set of all k-subsets of X. We say that X is k-Boolean independent if, for all

functions

α :0Xk1MN ²0, 1,®1´,

3

S`0X
k
1
α(S )π(S )¯ 0 3 α(S )¯ 0 for all S ` 0Xk1 .

Note that, if X is k-Boolean independent and k«%k, then X may not be k«-
Boolean independent.

E 1. Let F¯K(x
"
,… ,x

n
) where x

"
,… ,x

n
are algebraically independent

over K. In this case, X¯²x
"
,… ,x

n
´ is k-Boolean independent for 1%k% n.

E 2. Let F be a field and let

F
!
%F

"
%F

#
%…%F

t
¯F

be a chain of subfields, where F
i
¯F

i−"
(θ

i
) for i¯ 1,… , t and [F

i
:F

i−"
]¯ n

i
& 2. Let

X¯²θ
"
,…, θ

t
´. Since, for each i, ²1, θ

i
, θ#

i
,… , θni−"

i
´ is a basis for F

i
over F

i−"
, it follows

that ²π(S ) rSXX ´ is linearly independent over F
!
. In particular, X is k-Boolean

independent for all 1%k% t. The following are examples :

(1) Let F¯1(op
"
, op

#
,… ,op

n
) where p

"
, p

#
,… , p

n
are distinct primes. The set

X¯²op
"
, op

#
,… ,op

n
´ is k-Boolean independent for 1%k% n since, for each i,

op
i
a1(op

"
, op

#
,… ,op

i−"
) (see [12]).

(2) Let F¯GF(pn) where p is any prime and n¯ n
"
n
#
…n

t
, n

i
& 2, for all i.

Then there is a tower of subfields

F
!
%F

"
%F

#
%…%F

t
¯F

where F
!
¯GF(p), F

"
¯GF(pn

"), F
#
¯GF(pn

"
n
#),…,F

t
¯GF(pn). Then, for i¯ 1,… ,

t, there exists a θ
i
`F such that F

i
¯F

i−"
(θ

i
). Hence X¯²θ

"
,…, θ

t
´ is k-Boolean

independent for 1%k% t.
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E 3. For integers n&k& 1, let X¯²m
"
,… ,m

n
´ be a set of positive

integers chosen so that

0 n

:n
#
91mk

i
!m

i+"

for i¯ 1, 2,… , n®1. It is easy to prove by induction on t that X is a t-Boolean

independent subset of 1 whenever 1% t%k.

E 4. Let F contain an element x which is transcendental over the prime

field of F. Let m
"
,m

#
,… ,m

n
be a sequence of positive integers satisfying

m
"
­m

#
­…­m

i
!m

i+"
for 2% i% n®1.

It is easy to see that any integer m¯m
i
"

­…­m
ik

, where i
"
!…! i

k
, uniquely

determines the summands m
i
"

,… ,m
ik

, and, since the powers of x are linearly

independent over the prime field, it follows that the set X¯²xm
",xm

#,… ,xmn´ is k-

Boolean independent for 1%k% n.

P 1. If F is an infinite field and n is a positi�e integer, then F contains

an n-subset which is k-Boolean independent for 1%k% n.

Proof. If F has characteristic 0, then 1 is a subfield of F, and the result follows

from Example 3. Suppose that F has characteristic p. If F is algebraic over :
p
, then,

for any finite subfield K of F, take an element α `F®K. Now α is algebraic over K

since :
p
XK. Hence K(α) is a finite subfield of F that contains K properly. Thus we

can produce an arbitrarily long chain of finite subfields of F, and the proposition

follows from Example 2. If F is not algebraic over :
p
, then F contains an element

which is transcendental over :
p
, and the result follows from Example 4.

C 1. Theorem 2 holds if in the definition of M(G) we replace the set of

real numbers mi

j
by any set of n(p®1)-Boolean independent elements of cardinality

n#(p®1) in any field.

3. k-point separation with linear functionals

Let U be a vector space over a field F, and let U* be the dual space of U. We define

LS
k
(U,F )¯min²r& r :&XU* and & is k-point separating´. (8)

We say that LS
k
(U,F ) is undefined if there is no k-point separating family of

linear functionals in the dual space of U. For any field F, n-dimensional vector space

U over F and positive integer k, it is shown in [2] that, if

(n®1) 0k21% rF r,

then LS
k
(U,F ) is well defined and

LS
k
(U,F )% (n®1) 0k21­1.

From this we see that LS
k
(U,F ) can be undefined only when F is finite. This is the

case, for example, when k" rF r. For more details on the case when F is finite, see [2].
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T 3. Let F be a field which contains a set of cardinality n#(k®1) which is

t-Boolean independent for 2% t% n(k®1), and let U be an n-dimensional �ector space

o�er F. Then, for n,k& 2, we ha�e LS
k
(U,F )¯ n(k®1).

We divide the proof of Theorem 3 into two lemmas.

L 2. If F and U are as in Theorem 3, then, for n,k& 2, LS
k
(U,F ) is defined

and LS
k
(U,F )% n(k®1).

Proof. Let ²mi

j
r j¯ 1,… , n(k®1), i¯ 1,… , n´ be a set of cardinality n#(k®1) in

F which is t-Boolean independent for 2% t% n(k®1). Take U¯Fn, and, for each

j¯ 1,… , n(k®1), define f
j
`U* by

f
j
(x

"
,x

#
,… ,x

n
)¯m"

j
x
"
­m#

j
x
#
­…­mn

j
x
n
.

We claim that these n(k®1) linear functionals are k-point separating on U. Suppose

that this is not true. Then there is a set V¯²p
"
,… , p

k
´ of k distinct points in U such

that, for each j, f
j
restricted to V is not injective. We construct a graph G with vertex

set V and edge set E¯² f
"
,… , f

n(k−")
´. The incidence relation is defined as follows. For

each j ` ²1, 2,… , n(k®1)´, since f
j
is not injective on V, we can select integers a

j
, b

j
such

that 1% a
j
! b

j
%k and

f
j
(p

aj

)¯ f
j
(p

bj

). (9)

We say that p
aj

and p
bj

are endpoints of the edge f
j
. Note that different edges may join

the same vertices, but there are no loops.

This gives us a graph G with k vertices and n(k®1) edges. By Theorem 1, G

contains a subgraph H¯ (V
H
,E

H
) with at least two vertices which is an n-tree. By

renumbering, we can take

V
H

¯²p
"
,… , p

t
´ 2% t%k

and
E

H
¯² f

"
,… , f

q
´ q¯ n(t®1).

Write
p
a
¯ (xa

"
,xa

#
,… ,xa

n
) a¯ 1, 2,… , t.

Now, in coordinates, (9) becomes, for j ` [q],

m"
j
xaj
"
­m#

j
xaj
#
­…­mn

j
xaj
n
®m"

j
xbj
"
®m#

j
xbj
#
®…®mn

j
xbj
n

¯ 0. (10)

We think of (10) as a homogeneous system of n(t®1) linear equations in nt variables

xi

j
. Since the p

i
are distinct and the f

j
are linear, we can replace p

i
by p!

i
¯ p

i
®p

t
, for

all i. Then p!
t
¯ 0, and so we have reduced the system to a system of n(t®1) equations

in n(t®1) variables zi

j
¯xi

j
®xt

j
, i¯ 1,… , t®1, j¯ 1,… , n.

Now, if we order the variables

z"
"
, z#

"
,… , zt−"

"
, z"

#
, z#

#
,… , zt−"

#
,… , z"

n
, z#

n
,… , zt−"

n
,

then the matrix of coefficients of the linear system is equal to the matrix M(H ) of

Theorem 2. By Corollary 1, since H is an n-tree, we have detM(H )1 0. This implies

that the homogeneous system has only the trivial solution. It follows that p!
i
¯ 0 for

all i. Hence p
i
¯ p

t
for all i. This contradicts the fact that the p

i
are distinct. The proof

is complete.

We recall some definitions and results from linear algebra. Let U be an n-

dimensional vector space over a field F. An affine subspace X of dimension w in U is



304 .  ,  .    

a coset X¯x­W where W is a (linear) subspace of U of dimension w. X is a

hyperplane (respectively, line) if X is of dimension n®1 (respectively, 1). The following

are well known:

(A) If L is a line and H is a hyperplane in U, then either (i) L is contained in some

(unique) hyperplane parallel to H, or (ii) L intersects each hyperplane parallel to H

in precisely one point.

(B) If H
"
,… ,H

t
are hyperplanes in U, then the intersection H

"
f…fH

t
is either

empty or an affine subspace of dimension at least n®t.

Let & be a family of functions from X to Y, and let SXX. We say that S spoils

& if, for each f `&, there exist x, y `S, x1 y, such that f(x)¯ f(y). Clearly & is k-

point separating if and only if & is not spoiled by any subset S of X with rS r%k.

L 3. If U is an n-dimensional �ector space o�er a field F, then LS
k
(U,F )&

n(k®1) pro�ided that LS
k
(U,F ) is defined. In particular, this is the case when F is

infinite.

Proof. Let & be any family of linear functionals on U of cardinality n(k®1)®1.

It suffices to show that there is some subset S of U of cardinality less than or equal

to k which spoils &. The idea of our proof is first to find two points p, q which spoil

at least n®1 functionals in &. Then we generate successively additional points p
"
,

p
#
,… , p

l
,… , p

k−#
so that, as each new point p

l
is generated, we make sure that n

additional functionals in & are spoiled by the three points p, q, p
l
. Then, since

(n®1)­(k®2) n¯ n(k®1)®1, all of & is spoiled by ²p, q, p
"
, p

#
,… , p

k−#
´.

Clearly we can assume that each functional f `& is not zero, and so

f −"(c) is a hyperplane for c `F. We begin by selecting any (n®1)-subset & !

!
of &.

Then, since 0 ` f −"(0) for all f `& !

!
, we have by result (B) above that I¯U

f`& !

!

f −"(0)

has dimension at least 1. Let p, q ` I, p1 q, and let L
!
be the line containing p and q.

Let
&

!
¯² f `& rL

!
X f −"(c) for some c `F ´.

Note that &
!

contains at least n®1 functionals in & and is spoiled by ²p, q´. Now

assume that we have found, for each l!k®2, the following:

(1) a subset &
l
of & such that (i) &

!
X&

l
and (ii) r&

l
r& (n®1)­ln ;

(2) a subset ²p, q, p
"
,… , p

l
´ of U which spoils &

l
.

If r&
l
r& n®1­(l­1) n, we take &

l+"
¯&

l
and p

l+"
¯ p

l
. Thus we can assume that

r&
l
r! (n®1)­(l­1) n% n(k®1)®1.

We select $ «X& c&
l
such that r$ «r¯ n®1 if r& c&

l
r& n®1; otherwise, take

$ «¯& c&
l
. Then the intersection J¯U

f`$ « f −"( f(p)) contains p, and, by result (B)

above, it has dimension at least 1. Therefore, there is a line L
"
X J with p `L

"
. Let

$¯² f `& rL
"
X f −"(c) for some c `F ´.

Now there are two cases : (I) &
l
e$¯&, and (II) &

l
e$1&. In case I, let p

l+"
be

any point on line L
"
that is different from p. Then $ is spoiled by ²p, p

l+"
´, and hence

all of & is spoiled by ²p, q, p
"
,… , p

l+"
´. In case II, take g `& c(&

l
e$ ), and let d¯

g(q). Now, by the definition of $, L
"
is not contained in any hyperplane g−"(c) parallel

to g−"(d ), and so, by result (A) above, g−"(d ) intersects L
"
in exactly one point ; call this

p
l+"

. We claim that p
l+"

1 p and p
l+"

1 q. If p
l+"

¯ p, then the line L
!
¯ pq lies in
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g−"(d ) ; this implies that g `&
!
, but &

!
X&

l
and g a&

l
. If p

l+"
¯ q, the lines L

!
¯ pq and

L
"
¯ pp

l+"
are equal. This implies that $¯&

!
. Then $ «X$X&

!
X&

l
, which is

contrary to the definition of $ «. It follows that &
l+"

¯&
l
e$e²g´ is spoiled by

²p, q, p
"
,… , p

l+"
´ and r&

l+"
r& (n®1)­ln­(n®1)­1¯ n®1­(l­1) n, as desired.

4. k-point separation with smooth functions

In this section, we determine the cardinality DS
k
(2n,2) of a smallest family of

smooth (# ¢) functions from 2n to 2 that separates every set of k distinct points in

2n. Our references for this section are [6, 14, 15]. Given

f
"
,… , f

m
:2n MN2,

we write F¯ ( f
"
,… , f

m
) for the mapping F :2n !2m defined by

F(x)¯ ( f
"
(x),… , f

m
(x))

for x `2n. We identify the derivative DF(x) :2n !2m with the Jacobian matrix

[¦f
i
(x)}¦x

j
]. The rank of F at x is the rank of DF(x). We require three lemmas.

L 4. If F :2n !2m is smooth on an open set U, then there is a non-empty

open set VXU on which F has constant rank.

Proof. Let x be a point of U at which the rank of DF(x) attains its maximum,

say k. This implies that DF(x) has a k¬k non-singular submatrix. Since the

determinant is a continuous function, it follows that the same submatrix is non-

singular in a neighborhood V of x, and hence DF(X ) has rank k in V.

L 5 ([15, Proposition 12, p. 65]). If F :2n !2m is smooth and of constant

rank k on an open set U, then, for each x `U, M¯UfF−"(F(x)) is a manifold of

dimension n®k.

In Lemma 5, the tangent space to M at x is the kernel of DF(x).

L 6 ([14, Theorem 5-2, p. 111]). A subset M of 2n is a k-dimensional

manifold if and only if for each x `M there is an open set U of 2n containing x, an open

set W in 2k, and a 1-1 smooth function f :W!2n such that f(W )¯MfU, and Df(y)

has rank k for each y `W.

The function f in Lemma 6 is called a coordinate system around x. In this case,

the tangent space to M at x is the image of Df(y), where f(y)¯x.

T 4. For all n& 1 and k& 2, DS
k
(2n,2)¯ n(k®1).

Proof. Since linear functionals on 2n are smooth, by Proposition 1 and Lemma

2,
DS

k
(2n,2)% n(k®1).

It therefore suffices to prove that any family & of smooth functions on 2n of

cardinality nk®n®1 is spoiled by some set of at most k points in 2n.

For 'X&, let g
"
,… , g

s
be the distinct elements of ' listed in any fixed order.

Define
F' :2n MN2s by F' ¯ (g

"
,… , g

s
).
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Note that
y `F−"

' (F'(x))®²x´ 5 ²x, y´ spoils '.

By Lemma 4, since & is finite, we can find a non-empty open set U of 2n such that,

for all 'X&, F' has constant rank throughout U. Without loss of generality, we take

U¯2n.

Our plan is to show that there exists a partition of &

&¯&
!
e&

"
e…e&

k−#
(11)

such that the following are true:

(1) r&
!
r¯ n®1 and r&

j
r¯ n for 1% j%k®2;

there exists a point a `2n, and there exists a nested sequence L
j
, 0% j%k®2, of

submanifolds of 2n of positive dimension such that, for 1% j%k®2,

(2) a `L
j
XL

j−"
, and, for each b `L

j
®²a´, ²a, b´ spoils &

!
, and, if j& 1, there is a

point c
j
¯ c

j
(b) `2n such that ²a, b, c

j
´ spoils &

j
.

Once we have established the existence of such a partition, we can complete the

proof by taking b `L
k−#

®²a´. Then b `L
i
®²a´ for all i, and so, by (2) above,

there exists for each i& 1 a point c
i

such that ²a, b, c
i
´ spoils &

i
e&

!
. Hence

²a, b, c
"
, c

#
,… , c

k−#
´ spoils &, as desired.

To prove the existence of such a partition, we consider first the easy case in which

rank (F')! n®1 for every (n®1)-subset ' of &. In this case, we can take (11) to be

any partition satisfying (1) above, and let a be any point of 2n. Write F
i
¯F&

i

for all

i, and set
L

i
¯F−"

!
F
!
(a) 0% i%k®2.

Since rank (F
!
)! n, by Lemma 5, L

i
is a manifold of positive dimension. Hence, if b `

L
i
®²a´, then ²a, b´ spoils &

!
. Under our current assumptions for i& 1, rank(F

i
)! n,

and so M
i
¯F−"

i
F
i
(a) is also a manifold of positive dimension; if c

i
`M

i
®²a´, then

²a, c
i
´ spoils &

i
, and so ²a, b, c

i
´ also spoils &

i
.

It remains to consider the case in which there is an (n®1)-subset '
!

of & with

rank(F'
!

)¯ n®1. In this case, in (11), take &
!
¯'

!
, and let the rest of the partition

be chosen arbitrarily subject to (1) above. Again write F
i
¯F&

i

, and let a be any point

of 2n. We define the L
i

recursively as follows. First let L
!

be the 1-dimensional

manifold F−"

!
F
!
(a). Clearly, if b `L

!
®²a´, then ²a, b´ spoils &

!
. Assume that we have

already selected L
j
, 0% j! i%k®2, satisfying the conditions in (2) above. Notice

that each L
j
is 1-dimensional. To define L

i
, we consider three cases :

Case 1: rank(F
i
)! n.

In this case, we set L
i
¯L

i−"
. Then M¯F−"

i
F
i
(a) is a manifold of positive

dimension, and so there is an element c
i
`M®²a´, and hence ²a, c

i
´ spoils &

i
.

Case 2: There exists an f `&
i
such that the mapping F¯F&

!
e² f ´ has rank n®1.

In this case, M¯F−"F(a) is a manifold of dimension 1 containing a and contained

in L
!
. By assumption, a `L

i−"
XL

!
. Since M and L

i−"
are both 1-dimensional

submanifolds contained in the 1-dimensional manifold L
!

and a `MfL
i−"

using

Lemma 6, one can show that L
i
BMfL

i−"
is a 1-dimensional manifold. Note that

L
i

contains a and is contained in L
i−"

. If b `L
i
®²a´, then ²a, b´ spoils &

!
. Since

b `M®²a´, ²a, b´ spoils &
!
e² f ´. On the other hand,

M «¯F−"
&
i−

² f ´ (F&
i−

² f ´(a))
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is a manifold of positive dimension, and so any point c
i
`M «®²a´ makes ²c

i
, a´ spoil

&
i
®² f ´. Then ²a, b, c

i
´ spoils &

i
.

Case 3: rank(F
i
)¯ n and rankF&

!
e² f ´ ¯ n for all f `&

i
.

Let
&

!
¯² f

"
,… , f

n−"
´ and &

i
¯²g

"
,… , g

n−"
, g

n
´.

Then

F
!
¯F&

!

¯ ( f
"
,… , f

n−"
) and F

i
¯F&

i

¯ (g
"
,… , g

n−"
, g

n
).

In addition, we define

F¯F&
!
e²gn

´ ¯ ( f
"
,… , f

n−"
, g

n
) and G¯F&

i−(gn
´ ¯ (g

"
,… , g

n−"
).

In this case, F
i
and F have rank n, and F

!
and G have rank n®1. Thus the manifold

K¯G−"G(a) is 1-dimensional. Now it suffices to establish Assertion 1.

A 1. There is a 1-dimensional manifold L
i
with a `L

i
XL

i−"
and a 1-

dimensional manifold K
!
XK such that, for any x `L

i
, the level set g−"

n
g
n
(x) contains

exactly one point from each of the manifolds L
i
and K

!
.

Once Assertion 1 has been established, we can complete the proof as follows. Let

b `L
i
®²a´. Then b `L

!
®²a´, and so ²a, b´ spoils &

!
. By Assertion 1, L

i
fg−"

n
g
n
(b)¯²b´

and K
!
fg−"

n
g
n
(b)¯²c´ for some point c. Now there are two possibilities : b¯ c,

or b1 c. Suppose that b¯ c. Then b `K
!
®²a´, and so ²a, b´ spoils g

"
,… , g

n−"
. Then we

take c
i
to be any element of g−"

n
g
n
(b)®²b´, and ²b, c

i
´ spoils g

n
. Hence ²a, b, c

i
´ spoils

&
i
. On the other hand, if b1 c, then ²b, c´ spoils g

n
. Also, c `K

!
XG−"G(a), and so ²a, c´

spoils g
"
,… , g

n−"
unless c¯ a. However, if c¯ a, then a and b are distinct elements of

L
i
fg−"

n
g
n
(b), which contradicts Assertion 1. Therefore, if we set c

i
¯ c, then ²a, b, c

i
´

spoils &
i
, and the proof is completed.

It remains to prove Assertion 1. Since F
i
has rank n throughout 2n, by the Inverse

Function Theorem, there are open sets U and V with a `U such that F
i
maps U

diffeomorphically onto V. To simplify the proof, we identify U with V via F
i
. This

allows us to assume that the functions g
j

are simply the coordinate projections

g
j
(x

"
,… ,x

n
)¯x

j
for (x

"
,… ,x

n
) `U.

From above, both K and L
!
are 1-dimensional manifolds containing a. Since L

i−"

is a manifold of positive dimension contained in L
!
, it also has dimension 1, and, by

assumption, it contains a. It follows from Lemma 6 that there are coordinate systems

:I
"
MNK and ψ :I

#
MNL

i−"

where I
"

and I
#

are open intervals in 2 chosen so that 0 ` I
"
fI

#
,

(0)¯ψ(0)¯ a¯ (a
"
,… , a

n
)

and each of D (t), t ` I
"
, and Dψ(t), t ` I

#
, have rank 1, and in particular are non-zero.

We write
(t)¯ (

"
(t),… ,

n
(t)) for i ` I

"

ψ(t)¯ (ψ
"
(t),… ,ψ

n
(t)) for i ` I

#
.

Then
D (t)¯ ( !

"
(t),… , !

n
(t)) for i ` I

"

Dψ(t)¯ (ψ!

"
(t),… ,ψ!

n
(t)) for i ` I

#
.

We wish to establish that !
n
(t)1 0 for t ` I

"
and ψ!

n
(t)1 0 for t ` I

#
.
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Note that, since g
n

is the projection on the nth component, for all y `U, the

tangent space to g−"
n

g
n
(y) is the hyperplane of all points (x

"
,… ,x

n
) `2n such that

x
n
¯ 0. Thus, to show that ψ!

n
(t)1 0, it suffices to show that Dψ(t) is not in the tangent

space to g−"
n

g
n
(y) when y¯ψ(t).

Suppose that �BDψ(t) is in the tangent space to g−"
n

g
n
(y) and y¯ψ(t). By the

comment following Lemma 5, we have Dg
n
(y) �¯ 0. By the same comment, since �

is in the tangent space to L
!
, we have DF

!
(y) �¯ 0. It follows that DF(y) �¯ 0.

However, DF(y) is non-singular since F has rank n and hence �¯ 0. This contradicts

the fact that Dψ(t) is non-zero for t ` I
#
, and it thus proves that ψ!

n
(t)1 0 for t ` I

#
.

By the same reasoning, since rank F
i
¯ n, we can prove that !

n
(t)1 0 for all

t ` I
"
.

This shows that the mappings
n
:I

"
!2 and ψ

n
:I

#
!2 are both injections. Since

n
(0)¯ψ

n
(0)¯ a

n
, the nth component of a, there is an open interval I in 2 such that

a
n
` IX

n
(I

"
)fψ

n
(I

#
). Let J

"
¯ −"

n
(I ) and J

#
¯ψ−"

n
(I ). Finally, if we set K

!
¯ (J

"
)

and L
i
¯ψ(J

#
), then Assertion 1 holds. This completes the proof.

5. k-point separation with continuous functions

The motivation for this paper was originally the following question. Suppose that

& is a family of continuous functions from 2n to 2 that separates every k-element

set of points in 2n. How small can & be? Unfortunately, we were unable to determine

this number, CS
k
(2n,2), for all k, n. Nevertheless, we know from the linear case in

Section 3 that, if n,k" 1, then CS
k
(2n,2)% n(k®1), and we suspect that equality

holds. All we can say at present is that the lower bound on CS
k
(2n,2) increases at

least linearly with k and n.

P 2. If n" 1, then CS
k
(2n,2)&k for all k" 0.

Proof. We prove the proposition by induction on k. As there is no continuous

injection from 2n to 2, the proposition holds for k¯ 2. We claim that, if the

proposition holds for k, then it holds for k­1. Since CS
k
(2n,2)&CS

k
(2#,2) for

n& 2, we can assume that n¯ 2.

Suppose that CS
k
(2n,2)&k, and that f

"
,… , f

k
:2n !2 are continuous. We will

find a (k­1)-set that f
"
,… , f

k
fail to separate. By induction, there exists a k-set

²p
"
,… , p

k
´X2n that f

"
,… , f

k−"
fails to separate. If this set is not separated by f

k

either, we are done; otherwise, without loss of generality, we can suppose that

f
k
(p

"
)! f

k
(p

#
)!…! f

k
(p

k
). There are two cases.

Case 1: If k¯ 2, draw three disjoint arcs, and call them A
"
,A

#
,A

$
, from p

"
to p

#
.

By the Intermediate Value Theorem, there exist q
"
`A

"
, q

#
`A

#
and q

$
`A

$
such that

f
#
(q

"
)¯ f

#
(q

#
)¯ f

#
(q

$
). If any two of f

"
(q

"
), f

"
(q

#
), f

"
(q

$
) are equal, say f

"
(q

"
)¯ f

"
(q

#
),

then ²q
"
, q

#
´ spoil f

"
and f

#
. Thus, without loss of generality, suppose that f

"
(q

"
)!

f
"
(q

#
)! f

"
(q

$
). We have two subcases. If f

"
(q

#
)¯ f

"
(p

"
), then ²p

"
, q

#
, q

$
´ spoil f

"
and f

#
.

On the other hand, if f
"
(q

#
)1 f

"
(p

"
), say f

"
(q

#
)" f

"
(p

"
), then, by the Intermediate

Value Theorem, there exists a q!

$
`A

$
between p

"
and q

$
such that f

"
(q!

$
)¯ f

"
(q

#
), and

²q
#
, q

$
, q!

$
´ spoils f

"
, f

#
; similarly, if f

"
(q

#
)! f

"
(p

"
), there exists a q!

"
`A

"
such that ²q

"
,

q!

"
, q

#
´ spoils f

"
, f

#
.
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Case 2: If k" 2, there exists an arc from p
"

to p
$

that misses p
#
. By the

Intermediate Value Theorem, there exists a p
k+"

on this arc such that f
k
(p

k+"
)¯ f

k
(p

#
).

However, then ²p
"
,… , p

k+"
´ spoils f

"
,… , f

k
. This completes the proof.

P 3. For all k, n& 2, CS
k
(2n,2)":k}29 (n®1).

Proof. First, note that there is no continuous injection from 2n to 2n−". This

follows immediately from the Borsuk–Ulam Theorem [13, p. 266]. It suffices to prove

that CS
#l
(2n,2)" l(n®1) for l& 1.

Suppose that we have l(n®1) continuous functions f
"
,… , f

l(n−")
from 2n to 2 ; we

will find 2l points that spoil them. For each i, let F
i
:2n !2n−" be defined by

F
i
(x)¯ ( f

(i−")(n−")+"
(x),… , f

i(n−")
(x)).

As F
i
is not injective, there exist x

i
, y

i
such that F

i
(x

i
)¯F

i
(y

i
), and thus, for each j,

(i®1) (n®1)! j% i(n®1), f
j
(x

i
)¯ f

j
(y

i
). Then ²x

i
: i¯ 1,… , l´e²y

i
: i¯ 1,… , l ´ spoils

f
"
,… , f

l(n−")
. The proof is complete.

We suspect that it should not be too difficult to prove that CS
k
(2n,2)"

(k®1) (n®1). Showing that the lower bound is n(k®1) may be more difficult.

We conclude with a curious observation. Given n, CS
k
(2n,2) increases linearly

(and hence polynomially, not exponentially) in k. Yet, as we shall see, CSb
!

(2n,2)

is bigger than b
!
. This suggests that the infinite analogue of this theorem should have

CSκ(2n,2) increasing slowly above κ, but not so rapidly that CSb
!

(2n,2)¯ =, where

=¯ 2b
!. The result is some empirical evidence against the Continuum Hypothesis.

(Note that no evidence can be more than empirical, for Cohen [3, 4] proved that the

Continuum Hypothesis is neither provable nor disprovable from standard set theory,

that is, the Zermelo–Frankel axioms. Whether or not the Continuum Hypothesis is

‘ true’ depends on its utility, philosophical justification, aesthetic appeal, etc. Some

authors have argued that, in ‘reality ’, the continuum is ‘much’ larger than the

integers.) Recall that, if bα is a transfinite cardinal number, then bα+"
is the next

highest cardinal number.

T 5. If 1! n!b
!

and bα ! =, then CSbα
(2n,2)¯LSbα

(2n,2)¯bα+"
.

Proof. First, CSbα
(2n,2)"bα. Given some continuous functions fβ :2n !2,

β!bα, we choose a sequence of pairs of points pβ, qβ such that, for each β, fβ(pβ)¯
fβ(qβ) and, for any β, γ, ²pβ, qβ, pγ, qγ´ contains four distinct points. (This can be done

by recursion on β. If pγ, qγ have been chosen for all γ! β, then fewer than = points have

been chosen so far. If fβ is constant, choose any thus far unchosen pβ, qβ ; otherwise,

choose oβ, rβ such that, for some fixed c, fβ(oβ)! c! fβ(rβ), and then imagine =

mutually disjoint arcs from oβ to rβ. By the Intermediate Value Theorem, each arc

contains at least one point p such that fβ(p)¯ c, and, as at most rβr! = of these have

been chosen so far, we can choose two more, and call them pβ and qβ.) This set of bα

points spoils ² fβ :β!bα´.
On the other hand, LSbα

(2n,2)%bα+"
. To prove this, we construct a family of

bα+"
linear functions from 2n to 2 that separate all bα-subsets of 2n. Let ( be a set

of bα+"
real numbers. For r `(, define f

r
:2n !2 by setting

f
r
(x

"
,x

#
,x

$
,… ,x

n
)¯x

"
­rx

#
­r#x

$
­…­rn−"x

n
.
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Let &¯² f
r
:r `(´. By Vandermonde’s determinant, if r

"
,… , r

n
are distinct elements

of (, then the homogeneous linear system f
ri

(x)¯ 0, 1% i% n, has only the trivial

solution x¯ 0. It follows that, if p and q are distinct points of 2n, then the set

&(p, q)¯² f `& r f(p)¯ f(q)´

has at most n®1 elements. Now we claim that & separates every set of bα points. If

this is not true, then there is a set S of bα points that is not separated by &. Hence,

for each f `&, there is a pair of distinct points p, q `S such that f(p)¯ f(q). That is,

&¯ 5
²p,q´`0S

#
1
&(p, q) (12)

where

0S21
is the set of all two element subsets of S. However, since

0S21
has cardinality bα and each set &(p, q) has cardinality n, the right-hand side of (12)

has cardinality bα, and we have a contradiction.
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